Source code for span_marker.evaluation
import warnings
from typing import Dict
import evaluate
import torch
from sklearn.exceptions import UndefinedMetricWarning
from transformers import EvalPrediction
from span_marker.tokenizer import SpanMarkerTokenizer
[docs]
def compute_f1_via_seqeval(
tokenizer: SpanMarkerTokenizer, eval_prediction: EvalPrediction, is_in_train: bool
) -> Dict[str, float]:
"""Compute micro-F1, recall, precision and accuracy scores using ``seqeval`` for the evaluation predictions.
Note:
We assume that samples are not shuffled for the evaluation/prediction.
With other words, don't use this on the (shuffled) train dataset!
Args:
tokenizer (SpanMarkerTokenizer): The model its tokenizer.
eval_prediction (~transformers.EvalPrediction): The predictions resulting from the evaluations.
Returns:
Dict[str, float]: Dictionary with ``"overall_precision"``, ``"overall_recall"``, ``"overall_f1"``
and ``"overall_accuracy"`` keys.
"""
inputs = eval_prediction.inputs
gold_labels = eval_prediction.label_ids
logits = eval_prediction.predictions[0]
num_words = eval_prediction.predictions[2]
has_document_context = len(eval_prediction.predictions) == 5
if has_document_context:
document_ids = eval_prediction.predictions[3]
sentence_ids = eval_prediction.predictions[4]
# Compute probabilities via softmax and extract 'winning' scores/labels
probs = torch.tensor(logits, dtype=torch.float32).softmax(dim=-1)
scores, pred_labels = probs.max(-1)
# Collect all samples in one dict. We do this because some samples are spread between multiple inputs
sample_list = []
for sample_idx in range(inputs.shape[0]):
tokens = inputs[sample_idx]
text = tokenizer.decode(tokens, skip_special_tokens=True)
token_hash = hash(text) if not has_document_context else (document_ids[sample_idx], sentence_ids[sample_idx])
if (
not sample_list
or sample_list[-1]["hash"] != token_hash
or len(sample_list[-1]["spans"]) == len(sample_list[-1]["gold_labels"])
):
mask = gold_labels[sample_idx] != -100
spans = list(tokenizer.get_all_valid_spans(num_words[sample_idx], tokenizer.config.entity_max_length))
sample_list.append(
{
"text": text,
"gold_labels": gold_labels[sample_idx][mask].tolist(),
"pred_labels": pred_labels[sample_idx][mask].tolist(),
"scores": scores[sample_idx].tolist(),
"num_words": num_words[sample_idx],
"hash": token_hash,
"spans": spans,
}
)
else:
mask = gold_labels[sample_idx] != -100
sample_list[-1]["gold_labels"] += gold_labels[sample_idx][mask].tolist()
sample_list[-1]["pred_labels"] += pred_labels[sample_idx][mask].tolist()
sample_list[-1]["scores"] += scores[sample_idx].tolist()
outside_id = tokenizer.config.outside_id
id2label = tokenizer.config.id2label
# seqeval works wonders for NER evaluation
seqeval = evaluate.load("seqeval")
for sample in sample_list:
scores = sample["scores"]
num_words = sample["num_words"]
spans = sample["spans"]
gold_labels = sample["gold_labels"]
pred_labels = sample["pred_labels"]
assert len(gold_labels) == len(pred_labels) and len(spans) == len(pred_labels)
# Construct IOB2 format for gold labels, useful for seqeval
gold_labels_per_tokens = ["O"] * num_words
for span, gold_label in zip(spans, gold_labels):
if gold_label != outside_id:
gold_labels_per_tokens[span[0]] = "B-" + id2label[gold_label]
gold_labels_per_tokens[span[0] + 1 : span[1]] = ["I-" + id2label[gold_label]] * (span[1] - span[0] - 1)
# Same for predictions, note that we place most likely spans first and we disallow overlapping spans for now.
pred_labels_per_tokens = ["O"] * num_words
for _, span, pred_label in sorted(zip(scores, spans, pred_labels), key=lambda tup: tup[0], reverse=True):
if pred_label != outside_id and all(pred_labels_per_tokens[i] == "O" for i in range(span[0], span[1])):
pred_labels_per_tokens[span[0]] = "B-" + id2label[pred_label]
pred_labels_per_tokens[span[0] + 1 : span[1]] = ["I-" + id2label[pred_label]] * (span[1] - span[0] - 1)
seqeval.add(prediction=pred_labels_per_tokens, reference=gold_labels_per_tokens)
with warnings.catch_warnings():
warnings.simplefilter("ignore", UndefinedMetricWarning)
results = seqeval.compute()
if is_in_train:
return {key: value for key, value in results.items() if isinstance(value, float)}
return results